A Fast Method for Linear Waves Based on Geometrical Optics
نویسنده
چکیده
We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the wave speed, with amplitude that is slowly changing depending on the medium coefficients, under the assumption that the medium coefficients vary slowly compared to the wavelength. Based on this we construct a method of optimal, O(N) complexity, with basically the following steps: 1. decouple the wavefield into an approximately forward and an approximately backward propagating part; 2. propagate each component explicitly along the characteristics over a time step that is small compared to the medium scale but can be large compared to the wavelength; 3. apply a correction to account for the errors in the explicit propagation; repeat steps 2 and 3 over the necessary amount of time steps; and 4. reconstruct the full field by adding forward and backward propagating components again. Due to step 3 the method accurately computes the full wavefield. A variant of the method was implemented and outperformed a standard order (4,4) finite difference method by a substantial factor. The general principle is applicable also in higher dimensions, but requires efficient implementations of Fourier integral operators which are still the subject of current research.
منابع مشابه
The relationship between the Wigner-Weyl kinetic formalism and the complex geometrical optics method
The relationship between two different asymptotic techniques developed in order to describe the propagation of waves beyond the standard geometrical optics approximation, namely, the Wigner-Weyl kinetic formalism and the complex geometrical optics method, is addressed. More specifically, a solution of the wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained which yields the...
متن کاملComputational High Frequency Wave Diffraction by a Corner via the Liouville equation and Geometric Theory of Diffraction
We construct a numerical scheme based on the Liouville equation of geometric optics coupled with the Geometric Theory of Diffraction (GTD) to simulate the high frequency linear waves diffracted by a corner. While the reflection boundary conditions are used at the boundary, a diffraction condition, based on the GTD theory, is introduced at the vertex. These conditions are built into the numerica...
متن کاملLinear and Nonlinear Dust Acoustic Waves in Quantum Dusty Electron-Positron-Ion Plasma
The behavior of linear and nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma including inertialess electrons and positrons, ions, and mobile positive/negative dust grains are studied. Reductive perturbation method is employed for small and finite amplitude DAWs. To investigate the solitary waves, the Korteweg–de Vries (KdV) equation is derived and the solution is presented. B...
متن کاملStudy of Geometrical-Dependence of Glow Discharge on Gain Coefficient in a TE-N2 Laser
Based on a set of experiments, using a transversely exited (TE) oscillator-amplifier N2-laser system (OSC-AMP) with the AMP effective length of 31cm, measurements have been carried out for small signal gain, g0, and saturation energy density, Es, for different AMP gap separations. It was found that the gain-value depends on the AMP electrode gap separation, d<su...
متن کاملTransmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field
By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 47 شماره
صفحات -
تاریخ انتشار 2009